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Abstract: Over the past decade, there has been a dramatic increase in the use of various technologies in
the Architecture, Engineering, and Construction sector. Artificial intelligence has played a significant
role throughout the different phases of the design and construction process. A growing body of
literature recognizes the importance of artificial neural network applications in numerous areas of
the construction industry and the built environment, presenting a need to explore the main research
themes, attributes, benefits, and challenges. A three-step extensive research method was utilized
by conducting a bibliometric search of English language articles and conducting quantitative and
qualitative analyses. The bibliometric analysis aimed to identify the current research directions
and gaps forming future research areas. The scientometric analysis of keywords revealed diverse
areas within the construction industry linked to ANNs. The qualitative analysis of the selected
literature revealed that energy management in buildings and construction cost predictions were the
leading research topics in the study area. These findings recommend directions for further research
in the field, for example, broadening the application ranges of ANNs in the current Construction 4.0
technologies, such as robotics, 3D printing, digital twins, and VR applications.

Keywords: artificial neural network; built environment; bibliometric analysis; scientometric analysis;
energy efficiency

1. Introduction

Over the past decade, the Architecture, Engineering, and Construction (AEC) sector
has witnessed radical change due to new technologies as part of the Industry 4.0 revolution.
The fourth industrial revolution is part of the “cyber-physical systems” age that includes
a multitude of technologies, including the Internet of Things (IoT), robotics, blockchain
systems, 3D printing, and artificial intelligence (AI) [1]. AI implies using machines to model
intelligent behavior, such as reasoning, learning, and knowledge, with minimal human
intervention [2]. AI is a vast computer science area, including artificial neural networks
(ANNs). ANNs simulate some of the data-processing capabilities of the human brain [3].
They are systematic models that consist of a set of computational elements called neurons
that are organized into layers [4]. The most frequently used architecture of ANNs consists of
the input layer, which receives the data. The data are processed in the hidden layer, and the
output layer produces the results [5]. They have been making considerable technological
progress in several industries. They have also become a powerful tool in the construction
industry. ANNs have exhibited abilities to learn through examples, identify and classify
patterns in the data, and consequently deduce predictions when fed new information [6].
An advantage of these applications over traditional prediction methods is that ANNs give
more accurate predictions and are proven to be original models for problem-solving and
machine learning [7], ultimately becoming practical decision-support tools [8].
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A considerable amount of the literature has been published regarding the application
in numerous areas of the construction industry. Typical examples include achieving sus-
tainability in the energy conservation sector [9], and prediction and estimation problems in
construction [8]. Further studies have delved into the confines of cost [10] and the applica-
tion of ANNs in construction materials [11], and a considerable amount of the literature
has been conducted on the use of ANNs in structural analysis [12].

The applications of ANNs in the construction industry have been reviewed in the
literature from specific aspects, such as the applications of ANNs in energy systems [13],
the optimization of building thermal consumption [14], building energy use [15,16], the
performance of building material through the use of ANNs [17], the application of ANNs
in tunnel engineering [18], and the use of ANNs in construction management [19] and civil
engineering [20]. However, those reviews are limited to one aspect; they do not explore
the current research in applying ANNs in construction and built environments and fail
to include all the grounds and knowledge areas within the built environment. Thus, the
specific objectives of this bibliometric analysis are as follows:

1. A quantitative analysis identifies the critical authors and journal articles from emerg-
ing regions that have had the most significant influence on ANNs in construction and
the built environment over the past two decades.

2. Identify the key growth areas in research on ANNs in the built environment.
3. Recognize the structure of the knowledge base on ANNs in the built environment.
4. Reveal the areas that need further investigation by identifying the gaps in knowledge.
5. Identify the directions of future research.

The manuscript is organized into several vital sections to provide a comprehensive
overview of the application of artificial neural networks (ANNs) in the construction and
built environment. Following this introduction, the Methodology section details the multi-
stage critical literature review process, encompassing the data collection, quantitative
analysis, and qualitative analysis. The Quantitative Analysis & Scientometrics section
presents the results of the bibliometric search, highlighting the publication trends, the au-
thorship patterns, and the influential research articles. This is followed by the Quantitative
Analysis & Scientometrics section, which delves into the main research themes identified:
energy management in buildings, occupant comfort, design, and construction optimization,
cost prediction, health and safety, and soil mechanics. The Results section presents the
findings from the quantitative and qualitative analyses, including the authorship analysis,
the citation analysis, and the thematic clusters. The Discussion section synthesizes the
insights from the analysis, identifies the research gaps, and suggests future research direc-
tions. The Future Perspectives section outlines the potential advancements and applications
of ANNs in Construction 4.0 technologies and emphasizes the importance of extending
research to developing countries and addressing model improvement challenges. Finally,
the Conclusions section summarizes the key findings and highlights the transformative
potential of ANNs in the construction industry.

2. Methodology: Multi-Stage Critical Literature Review

A bibliometric analysis was first introduced by [21] as it was identified as “the applica-
tion of mathematical and statistical methods to books and other media of communication”.
This method replaced the statistical bibliography and expanded as a scientific technique
for conducting scientific research [22]. This study implemented a mixed-method approach
combining quantitative and qualitative research methodologies, enhancing the strengths
and minimizing the weaknesses of the monomethod research [23]. The three phases of the
research methodology are: (1) Data Collection, (2) Quantitative Analysis, and (3) Qualitative
Analysis, as shown in Figure 1.
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2.1. Phase 1: Data Collection

This phase started with the keyword selection. The search query used for the data col-
lection was “(ANN OR “Artificial Neural Network” OR “Artificial Neural Networks”) AND
(“Building Construction” OR “Built Environment” OR ((construction OR building) AND
management)) AND NOT (infrastructure)”. The keywords were chosen to help focus the
search on the artificial neural networks in construction and the built environment, including
the planning, design, execution, construction, operation, and post-occupation phases.

The initial search was conducted using the Scopus database and resulted in 1865 doc-
uments, as displayed in Figure 2. The resulting articles were filtered by choosing the
“journal” articles, excluding all the other conference papers and books to ensure the quality
of the study, and limiting the search to articles in the English language, thus resulting in
1265 articles. Further manual screening was performed by reading the title and the abstract
and skimming through the paper to remove the unrelated research articles. This process
resulted in 689 articles saved in CSV format through the export option in Scopus, preparing
the results for further statistical analysis.
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2.2. Phase 2: Quantitative Analysis Stage

The second phase started with applying bibliometric techniques to conduct a quan-
titative analysis of the 730 papers extracted from Scopus that are closely related to the
application of ANN in the built environment. Bibliometric mapping was used in this
section to refine the most influential articles and identify the research trends and direction.
Text mining software was used to conduct a scientometric analysis. It uses bibliometric
data to create knowledge maps and present new perceptions of the research area built on
the previous research strengths [24]. Several data mining software tools, such as CiteS-
pace, Gephi, and HistCite, are available to conduct scientometric analyses. Nevertheless,
VOSviewer was chosen for this study because it is widely available and most suitable for
visualizing more extensive networks [25].

2.3. Phase 3: Qualitative Analysis Stage

Following the data collection and the scientometric analysis, a qualitative analysis was
conducted to identify the knowledge areas in applying ANN in construction and the built
environment. Gaps in knowledge were explored and identified, providing recommenda-
tions for future research.
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3. Quantitative Analysis and Scientometrics

After applying the exclusion criteria described in the previous section, a quantitative
analysis was performed on the skimmed 730 papers. This section introduced an overview
of the publication rate within the field. A co-authors analysis, co-words analysis, and
cluster analysis were performed to determine the publication frequencies and the shift in
the study aims over the years. The impact analysis referred to the strengths and research
gaps for future reference.

The number of articles on ANNs increased steadily until 2008. The first peak line
between 2010 and 2013 refers to the development phase of the ANN’s contribution to infor-
mation technology beforehand [26]. Figure 3 shows an evident increase in the publication
rate within the past five years (2019–2023). The volume of publications has almost doubled
between 2018 and 2020.
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3.1. Authorship Analysis
3.1.1. Active Countries

The geographical distribution of the research articles based on the correspondence
author’s country is shown in Figure 4. China leads the list with 160 publications that have
over 6300 citations. This corresponds with the country’s drive towards a new generation
of artificial intelligence [27]. Research articles originating from the United States were
cited slightly as the highest. However, China seems to be catching up on citation numbers,
even though it has had this rigorous rise only after 2020. The top 20 active countries listed
according to the number of publications as a bar chart with an indication of the number
of citations per country are shown in Figure 5. The chart aligns the citations for these
publications for the quality indication. This analysis identified China, the United States,
the United Kingdom, South Korea, and India as the top five countries for publications on
ANNs in construction research. Moreover, the citation numbers of quite a lower number
of publications refer to the high-quality research in countries such as Australia, Canada,
Malaysia, and Japan.
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3.1.2. Co-Authors Analysis

The co-authors analysis shows the most productive authors in the AEC sector who
utilized ANNs in their applications. This table was generated through the “co-authorship
analysis” in VOSviewer (Visualization for Similarities). For this analysis, the minimum
number of documents per author was set to three, with a minimum citation of 100.
Thirty-three authors met the thresholds. Figure 6 lists the authors with the highest ci-
tations aligned with the number of publications by each author. Yacine Rezgui tops the list
with six publications spanned between 2014 and 2018 in building energy optimization and
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modelling [28,29]. Fariborz Haghighat is second in place with five articles but leads the
race with a citation number that exceeds 1000 citations. Haghighat publications between
2009 and 2020 show a high interest in the relationship between occupant behavior, building
design, and energy modelling using genetic algorithms [30,31]. In the construction man-
agement section, Mehrdad Arashpour has significant publications on predictive models for
labour productivity and construction safety, costs, and automation in construction [32–34].
However, studies and reviews on the relationship between occupant behavior and energy
consumption are led by Mengjie Han [35,36].
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3.2. Citation Analysis
3.2.1. Journals Citation Analysis

The following analysis revealed the influence of the sources publishing research
documents in applying ANNs in construction and the built environment. The type of
analysis conducted was “citation” analysis for “sources” in VOSviewer, and the limit was
set to five publications within the research topic, by which 31 journals meet the threshold.
The rank of the journals according to the number of publications indicates the weight
of the different applications for ANNs in the construction sector. Four out of the top
six journals were energy-themed journals. The Energy and Buildings journal had the highest
number, with an above-average 60 publications and around 5900 citations. The Applied
Energy journal followed the lead with 27 publications. The Building and Environment journal
represents environmental-based research, which came in third place with 26 publications
and over 1790 citations. This category may not represent the largest publication number,
but it has been a topic of interest since 2020. The third theme is applications within
the construction and civil disciplines with two journals: the Journal of Construction and
Management and Automation in Construction. The latter showed the highest impact among
the list, with more than 2000 citations for only 20 publications. Figure 7 shows the list of
journals ranked according to the number of publications and aligned with the number of
citations for each journal.
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3.2.2. Articles Citation Analysis

In this section of the scientometric analysis, the top-cited articles were extracted
through a “citation” analysis in VOSviewer, choosing the type as “documents” and the doc-
uments with a minimum citation of 100 as a threshold. Out of the 730 articles, 84 documents
met the threshold.

Table 1 lists the top 20 cited articles. The top of the list is reviewing articles in
the different fields of ANN application. Energy modelling for forecasting, prediction
modelling, and demand estimations [13,36–39]. Among the list is a top-cited article [40]
addressing thermal comfort and energy consumption optimization in residential buildings
using ANN training for less time and significantly enhancing thermal comfort and energy
consumption. Further articles worked on thermal comfort modelling and its relation to
energy savings [41,42], while other studies modelled heating/cooling loads addressing the
environmental parameters [43,44]. Over the years, other scholars have used ANNs in civil
engineering studies with top-cited review articles by [20], leading to very advanced studies
that deal with highly processed construction materials, especially concrete, as the main
structural element [11].

Table 1. Top-cited articles.

References Title Year Citations

[13] A review of applications of ANN and SVM for building electrical energy
consumption forecasting 2014 686

[20] Neural networks in civil engineering: 1989–2000 2002 677

[37] A review on artificial intelligence-based load demand forecasting techniques for smart
grid and buildings 2015 653
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Table 1. Cont.

References Title Year Citations

[40] Multi-objective optimization of building design using TRNSYS simulations, genetic
algorithm, and artificial neural network 2010 532

[36] A review of data-driven approaches for prediction and classification of building
energy consumption 2018 470

[38] A decision tree method for building energy demand modelling 2010 458

[39] Deep learning for estimating building energy consumption 2016 432

[16] A review of artificial intelligence-based building energy use prediction: Contrasting
the capabilities of single and ensemble prediction models 2017 407

[45] Artificial neural networks for the prediction of the energy consumption of a passive
solar building 2000 403

[41] Neural networks based predictive control for thermal comfort and energy savings in
public buildings 2012 356

[46] Multi-objective optimization for building retrofit: A model using genetic algorithm
and artificial neural network and an application 2014 346

[42] Application of multi-objective genetic algorithm to optimize energy efficiency and
thermal comfort in building design 2015 314

[47] Prediction of hourly energy consumption in buildings based on a feedback artificial
neural network 2005 310

[48] Modelling heating and cooling loads by artificial intelligence for energy-efficient
building design 2014 306

[49] Prediction of building energy consumption by using artificial neural networks 2009 301

[44] Predicting hourly cooling load in the building: A comparison of support vector
machine and different artificial neural networks 2009 301

[50] Review on home energy management system considering demand responses, smart
technologies, and intelligent controllers 2018 289

[51] Artificial neural network model for forecasting sub-hourly electricity usage in
commercial buildings 2016 286

[11] Predicting the compressive strength of normal and high-performance concretes using
ANN and ANFIS hybridized with Grey Wolf Optimizer 2020 283

[52] Artificial neural networks for energy analysis of office buildings with daylighting 2010 249

3.3. Authors’ Keywords Analysis

The final section of the scientometric analysis is the co-occurrence of author keywords
to visualization essential contents of the publications [53,54]. There are two perspectives to
analyze the keyword diagrams. First, there is the study of the relation between ANN as the
main keyword and its different applications in the AEC sectors we are studying. This also
includes studying the weight of each cluster. Another way to perceive this analysis is by
studying the development of the research focus over the years using these co-occurrences.

3.3.1. Co-Occurrence Analysis

Figure 8 represents the output of the VOSviewer program for the “co-occurrence”
analysis of author keywords. The following measures were taken for the inclusion and
exclusion criteria of the keywords: (1) the threshold value was set at a minimum of three
(hence including keywords occurring three or more times); (2) other keywords with a
semantically consistent meaning were combined, for example, ANN and “Artificial Neural
Network” or BIM and “Building Information Modelling”. Finally, 162 keywords were
shortlisted and visualized.
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3.3.2. Thematic Clusters

The co-occurrences mapping highlighted six clusters of keywords networked with the
main keyword “Artificial Neural Networks”. It gives a comprehensive overview of the
research field indulged with ANNs within the AEC sector as follows:

1. Cluster one—“Red”: the largest cluster has 42 keywords. It is more related to the
basics of the artificial neural networks within the early years of ANN integration in the
AEC section, as it refers to research themes between 2007 and 2016 [13,15]. It includes
keywords related to themes such as the construction industry and numerical models
for data analysis. The construction theme focuses on construction management, con-
crete strength analysis, demolition waste estimates, labor productivity, and personnel
issues on site. The second theme includes studies that use ANN algorithms for the
prediction analysis for cost, behavior, and risk assessment. It includes keywords for
fuzzy logic/sets, regression analysis, decision support systems, ensemble algorithms,
genetic algorithms, and the Adaptive Neuro-Fuzzy Inference System (ANFIS).

2. Cluster two—“Green”: this cluster (34 keywords) has one major theme that includes
the typical hierarchy of artificial intelligence, including machine learning, deep learn-
ing, and convolutional neural networks (CNNs). On the other hand, it includes a
construction safety theme [55,56]. The CNN theme is connected to all computer vision,
remote sensing, and semantic analysis [57–59]. CNNs are also for building/urban ex-
traction studies, the newest study fields in urban and built environments [60,61]. The
second theme is an extension of the construction industry that shifted more towards
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construction safety [62,63] and cost estimations [64,65] within different project phases,
not only the initial or conceptual phases.

3. Cluster three—“Blue”: the cluster has three main themes: energy consumption,
thermal comfort, and occupant behavior [66,67]. They are interconnected with key-
words such as BMS, IoT, smart/intelligent, and homes/grid [37,68–70]. The interre-
lation between the three themes aligns with the significance of a holistic approach
to serve each other towards adequate, sustainable, and energy-considered “building
design” [71–74].

4. Cluster four—“Yellow”: this cluster shows a greater focus on energy management
and modelling systems based on HVAC controls. This cluster focuses on a group of
algorithms such as long short-term memory (LSTM) [75], pattern recognition [76],
recurrent neural networks [77], and random forest [78,79].

5. Cluster five—“Grey”: the highest co-occurrence and length strength in this cluster is
“energy efficiency” and then “data-driven” models. It refers to the set of publications
that were published between 2018 and 2020. It ensures the track of development
within this area using ML and ANN through models such as multiple regression
analysis, support vector regression, and transfer learning. Thus, it helped to improve
the energy models’ simulation efficiency and prediction accuracy.

6. Cluster six—“Cyan”: this seems to be the smallest cluster with only 18 keywords;
however, it was considered the core cluster in this analysis. It includes the primary
keyword ANN together with major concepts of deep neural networks, genetic algo-
rithms, digital twins, life cycle assessment, and sustainability [80–84].

This analysis highlights the presence of energy modelling, which appears in nearly
all the clusters with various weights and link strengths. Energy models are studied for
estimation, optimization, efficiency, prediction, forecasting, and control, with the different
controlling parameters of HVAC, heating/cooling loads, thermal comfort, occupant behav-
ior, etc. Also, the construction and project management sector used data-driven models
extensively for cost estimation and risk assessment. Finally, ANN was used in a segregated
mode to study thermal comfort, life-cycle assessment, indoor air quality, building design,
urban planning, and more design-based approaches.

As for the timeline study and the results of VOSviewer yearly overlay analysis, there
are three main phases that represent the shift from one research focus to another, which can
be presented as follows:

• (2007–2014); represents the start of the integration of the ANN models into the AEC
sector depending on the numerical models for data management, analysis, and fore-
casting over very considered phases of the construction project feasibility study or
energy consumption analysis.

• (2014–2018); the intermediate phase, which followed the evolution of the concept of
the IoT and publications, appears to integrate ANN, ML, and deep learning with
three main themes: demand response within smart buildings, energy models, and the
integration with BMS as a complementary approach for the IoT.

• (2018–Present)In recent years, the rate of trial experiments on the various core themes
mentioned has been increasing in alignment with digital transformation. There is a
paradigm shift that makes use of the development of remote-sensing technologies,
which impose CNN and its related applications, such as computer vision, image
processing, and semantic analysis.

In conclusion, data-driven models are the core concept for many studies, whether it is
mentioned or not. The change occurs within the application field or the type of data used.
Construction management and project cost models are highly prevalent in early studies.
In 2019, indoor air quality and life cycle assessments led the scientific platform. Then,
the data-driven model was shifted again for the data acquired from real-time monitoring
through different types of remote sensing into BIM and construction management.
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4. Results

The data collection results and the scientometric analysis phases are the core bases
for this qualitative analysis. A qualitative analysis typically requires a smaller sample
than quantitative research [85,86]. A proposed approach to define the sample size for the
qualitative analysis is the “rule of thumb”, based on the methodological considerations
and experience with similar studies [87]. Consequently, this study adopts approaches from
previous research articles, setting the inclusion criteria for the qualitative analysis [88–90].
The research team performed the process manually. The selection procedure took into
consideration the results of the scientometric analysis: (1) The authorship analysis for the
active countries and productive authors; (2) The journals and articles citation analysis; and
(3) The research clusters resulting from the co-occurrence of authors keywords.

The quantitative analysis provides an overview of the articles’ quality. However,
studies from different themes and different study domains have different quantitative
thresholds that reflect the citation rates. Therefore, some studies with a relatively lower
citation impact are manually added because they are novel ideas or trials that no one has
taken the lead to construct. These studies will be presented within each cluster, defining
new research gaps or proposed fields for future scientific discoveries. Another inclusion
criterion was an intentional tracking of the author’s research findings within the same
theme. Some were added to cover the application within different typologies or the change
in research methodology at different years.

As a result, among the 730 publications resulting from Phase 1, 165 articles were
selected (Appendix A). The resulting articles were categorized into six themes (Figure 9):
energy management in buildings, occupant comfort in buildings, health and safety in
construction, cost prediction, design optimization, and soil mechanics. The categorization
was developed through a unanimous agreement among the research team. Two factors
were considered while determining the research themes: (1) phases of a construction project;
and (2) co-occurrence mapping of the authors’ keywords.

Buildings 2024, 14, x FOR PEER REVIEW 11 of 38 
 

In conclusion, data-driven models are the core concept for many studies, whether it 
is mentioned or not. The change occurs within the application field or the type of data 
used. Construction management and project cost models are highly prevalent in early 
studies. In 2019, indoor air quality and life cycle assessments led the scientific platform. 
Then, the data-driven model was shifted again for the data acquired from real-time mon-
itoring through different types of remote sensing into BIM and construction management. 

4. Results 
The data collection results and the scientometric analysis phases are the core bases 

for this qualitative analysis. A qualitative analysis typically requires a smaller sample than 
quantitative research [85,86]. A proposed approach to define the sample size for the qual-
itative analysis is the “rule of thumb”, based on the methodological considerations and 
experience with similar studies [87]. Consequently, this study adopts approaches from 
previous research articles, setting the inclusion criteria for the qualitative analysis [88–90]. 
The research team performed the process manually. The selection procedure took into 
consideration the results of the scientometric analysis: (1) The authorship analysis for the 
active countries and productive authors; (2) The journals and articles citation analysis; and 
(3) The research clusters resulting from the co-occurrence of authors keywords. 

The quantitative analysis provides an overview of the articles� quality. However, 
studies from different themes and different study domains have different quantitative 
thresholds that reflect the citation rates. Therefore, some studies with a relatively lower 
citation impact are manually added because they are novel ideas or trials that no one has 
taken the lead to construct. These studies will be presented within each cluster, defining 
new research gaps or proposed fields for future scientific discoveries. Another inclusion 
criterion was an intentional tracking of the author�s research findings within the same 
theme. Some were added to cover the application within different typologies or the 
change in research methodology at different years. 

As a result, among the 730 publications resulting from Phase 1, 165 articles were se-
lected (Appendix A). The resulting articles were categorized into six themes (Figure 9): 
energy management in buildings, occupant comfort in buildings, health and safety in con-
struction, cost prediction, design optimization, and soil mechanics. The categorization 
was developed through a unanimous agreement among the research team. Two factors 
were considered while determining the research themes: (1) phases of a construction pro-
ject; and (2) co-occurrence mapping of the authors� keywords. 

 
Figure 9. Number of articles included in each research category. 

4.1. Energy Management in Buildings 

Figure 9. Number of articles included in each research category.

4.1. Energy Management in Buildings

Improving the energy performance of buildings has been a significant area of interest
within the construction industry due to its importance in decreasing resource depletion and
global warming [91]. Artificial intelligence in energy management in buildings was a key
research area, with 33% of the chosen publications discussing this topic. The application of
ANNs in energy management within buildings focuses on two areas: predicting the energy
consumption of buildings during the design phase and using ANNs to model, optimize,
and improve the energy performance in buildings.
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4.1.1. Predicting Energy Consumption

Designing energy-efficient buildings has become essential to conserve energy, reduce
emissions, and enhance occupants’ quality of life [92]. Forecasting energy use in buildings
is crucial in digitizing the built environment and assessing the energy-saving prospects [93].
Artificial neural networks can predict buildings’ energy performance in the early design
phases. They can assist architects and engineers in creating sustainable built assets [13,49].
Several studies have used ANNs to predict the energy consumption of buildings [45,94].
Studies such as [45,94,95] used energy consumption data from an office building located
in Shanghai as inputs to set up three different hourly consumption prediction models
(artificial neural network, support vector regression, and autoregressive integrated moving
average models). The study concluded that the prediction capabilities of the ANN model
were better than those of the two other models. Moreover, hourly forecasted and measured
temperatures are another methodology used for energy prediction using ANNs [44,47,51].
These studies provide a high precision of prediction among the data-driven approaches.

Wei et al. [96] proposed using a blind system identification method to predict the
energy consumption in office buildings based on an ANN and the number of occupants
as the input. With a different approach, Bui et al. [97] examined the use of datasets
obtained by monitoring the effect of a façade system and the dimensions of a building
to validate a hybrid artificial neural network model. The proposed approach exhibited
capabilities in forecasting the energy consumption in buildings. Refs. [98,99] developed
recurrent neural network models for predicting tlectricity consumption in commercial and
residential buildings. The developed neural network models performed well in medium-
to long-term predictions. Dong et al. [100] specified their study for cross-laminated timber
office buildings in severely cold regions. The results showed that when the number of
hidden layers in an ANN exceeds five, the ANN has multiple outputs that enhance the
accuracy of the energy prediction and cost consumption. The studies by [101,102] identified
vital building variables that can be used for clustering to impact tnergy consumption.
Deb and Lee [101] considered energy audit reports pre- and post-retrofit approaches in
air-conditioned office buildings to understand their energy-saving prospects.

Further studies were conducted on office and commercial buildings [51,95,103–105],
while some studies were conducted for prediction within educational settings [106,107].
Residential and hospitality buildings are considered one of the highest energy-consuming
building sectors. Therefore, the energy prediction analysis is covered during the differ-
ent building phases of planning [108], designing [109], construction [9,110], and post-
occupation [111].

4.1.2. Improving Energy Performance

Improving the energy performance of buildings has become a critical issue, as build-
ings are responsible for 40% of the energy consumption. Several studies have explored
the use of ANNusing ANNs to enhancemance in different types of buildings [112,113].
ANNs can include different variables and weigh them, as well as assess and provide
decision-making algorithms for optimization. Studies include different variables, such
as greenhouse gas emissions, indoor climate control [78], retrofitting strategies [52], and
building thermal properties [114], for enhancing building energy performance. Therefore,
multi-objective frameworks have been used to adapt energy modelling to the varying and
interconnected variables in the building energy optimization process [115–117].

Li et al. [115] presented an optimization energy framework for residential buildings. A
simple backpropagation neural network has been compared in a study by Turhan et al. [118]
with a building energy simulation tool called KEP-IYTE-ESS to predict the buildings’
heating load. It has been observed that ANNs have advantages over the simulation tool in
terms of their simplicity, the speed of the calculations, and the ability to learn from limited
numbers of datasets. Along the same lines, Rahman and Smith [98] developed a deep
recurrent neural network for heating demand prediction over a medium- to longer-term
horizon. Chou and Bui’s [48] study addressed the same issue by constructing prediction
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models using 768 experimental datasets to forecast heating and cooling loads in buildings
in the design stage. Ngo [92] compared cooling load predictions made through machine
learning with models from physics-based energy simulations. The study demonstrated how
the machine-learning model agreed with the physics-based model, thus offering a substitute
for the conventional design process. Adopting a different approach, Ashouri et al. [119]
focused on the impact of occupants’ behavior on the energy performance of buildings.
They developed a framework using multiple data-mining methods (including clustering,
association rules mining, and neural networks) to unveil the possibilities of energy savings
in buildings when occupants are more cautious. Some scholars directed their studies to
minimize energy consumption in buildings without disturbing occupants’ comfort using
several optimization models (including a genetic algorithm, a neural network algorithm,
and an artificial bee colony) [29,57,120,121]. Others have utilized artificial neural networks
to develop decision-support systems for improving building energy efficiency [122].

Energy modelling for optimization is a common application on different typologies,
which include commercial and office buildings [52,123,124]. Moreover, Refs. [121,125]
performed their studies on educational buildings, while other studies were conducted
in domestic settings [110,126]. Energy consumption is not constrained to single-building
end uses. However, the investigation into integrated urban systems is the key to reducing
consumption and coping with rapid resource depletion. Urban scale modelling is a unique
study field that deals with big data and considers the efficient integration with smart
grids [39,127].

Energy optimization using data-driven approaches is the most reliable solution for
effective energy modelling and optimization. However, the increase in the existing frame-
works adoptinghine-learning methods can provide a base for further investigation into
unrecognized errors and unseen data bias for generalization [128]. Another perspective in-
vestigated generalization as a comprehensive framework in the existing literature [104,129].

The studies presented show the new possibilities of applying artificial intelligence
tools in energy modelling and forecasting. Conventional methods are falling behind in their
ability to process large datasets. Consequently, ANN models are answering this demand,
although the comfort of occupants is also an important factor, sometimes raising a potential
conflict with the energy efficiency demands. This issue of occupant comfort in buildings
will be discussed in the next section.

4.2. Occupant Comfort in Buildings

Occupant comfort in buildings is essential when designing a building and plays a
key role in occupants’ health and productivity. Two integrated research topics emerged
within this field in the overall sample of the articles. These will be discussed in the
following subsections.

4.2.1. Thermal Comfort of Occupants

The first research topic that gained attention from numerous scholars was the use
of ANN models to predict occupants’ thermal comfort in indoor environments. This
study area is essential in determining occupants’ satisfaction and evaluating the building’s
energy consumption. However, it is challenging because it depends on tangible and
intangible factors. Researchers have used ANN models to predict thermal comfort in indoor
environments. They have incorporated input data on air temperature, relative humidity,
and several factors concerning occupants, such as their clothing and behavior [130]. Some
researchers have considered the behavioral adaptions of occupants, applying a Bayesian
neural network (BNN) algorithm to predict the thermal occupant preferences using the
ASHRAE Global Thermal Comfort Database II [131]. Studies have demonstrated that
thermal comfort and other indoor environmental quality factors influence the performance
of occupants in various settings. Alzahrani et al. [132] investigated these effects on teachers’
performance in a technical college in Saudi Arabia using ANN. The study concluded that
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the optimum temperature for the best performance of teachers ranges between 23 and
25 ◦C, with a relative humidity range of 65% and a ventilation rate of 0.4 m/s.

A considerable amount of literature has addressed the issue of achieving the desired
thermal comfort levels for occupants by controlling heating, ventilation, and air condition-
ing (HVAC) systems through deploying different neural network methods [41,42,133–139].
Building information modelling (BIM) has also been incorporated alongside ANNs in ther-
mal comfort studies. Ma et al. [140] proposed a BIM and ANN-based system to estimate
the individual thermal comfort of the occupants. The proposed system integrated thermal
information into the BIM model, an approach that aims to assist designers in creating a
comfortable and green indoor environment. On the other hand, Orosa et al. [141] addressed
internal covering materials in buildings. A neural network procedure was trained and
employed to predict indoor ambiences, thermal comfort, and energy consumption based
on the permeability levels of the internal coverings. The study found that the permeable
coverings required a lower energy consumption in HVAC systems during the summer to
reach acceptable comfort levels. Other indoor environmental quality factors have been the
focus of some studies, such as indoor air quality [142–144] and daylight illuminance [145].

The latest developments in thermography technology have allowed for further non-
invasive methods to measure occupants’ thermal sensations using CNNs and computer
vision [146,147]. However, this novel strand of science is still way ahead of generaliza-
tion and real-life application due to the complexity of the variables that undergo the
ANN algorithms.

In conclusion, prediction models incorporating input variables relating to the individ-
ual thermal comfort of occupants are more likely to be implemented in new buildings as
they give better predictions of the thermal comfort levels of the occupants.

4.2.2. Modelling Occupant Behavior

Several methods have been used to model occupants’ presence and behavior in build-
ings in the past four decades [148,149]. A considerable number of these methods utilized
neural networks and deep learning. Neural networks demonstrate a learning capability to
identify the relationship between input signals while capturing crucial information during
training [150]. Moreover, they have fault tolerance capabilities as well as pattern detection.
Acharya et al. [151] integrated a BIM system with a CNN for the indoor positioning of occu-
pants in large spaces in real-time, which would previously be time-consuming. Predicting
occupant behavior is essential for design energy optimization and modelling.

Within the detection pattern of occupants in space, predicting workers’ productivity
in construction is of great concern for construction management efficiency and timeline
alignment. The development of this sector has evolved since 2005, using AI to analyze the
survey data [152] until the development of using image-based data for evaluating workers’
productivity [33,153–156].

Occupant control of the heating, ventilation, and air conditioning (HVAC) systems of
the indoor environment is crucial to determining the occupancy information of the building
in the design stages [157]. Several studies have addressed the impact of occupant behavior
on building energy consumption. Ref. [158] pointed out that occupant behavior influences
the energy consumption in buildings up to over seven times. Occupancy information is
vital and highly complex. Studies have proposed a generative adversarial network (GAN)
framework to model building occupancy and validated the framework through real-life
experiments [157]. Ref. [66] argued that occupant behavior should be accounted for when
conserving energy in buildings. They used a machine-learning model to determine the
heating and cooling loads in a building, using occupant behavior as a predictive variable
in the model. However, some scholars observed that it is vital to consider other factors
influencing occupant behavior, such as interior design, mechanical systems, and occupancy.
Deng and Chen [149] considered these factors when they developed a reinforcement
learning model of occupant behavior by adjusting the thermostats and clothing levels. This
transfer-learning model successfully predicted occupant behavior in office and residential
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buildings. In an earlier study, Deng and Chen [133] implemented a behavioral ANN model
when simulating the energy consumption of office buildings using the EnergyPlus software.
The study concluded that thermostat setback control could reduce energy consumption by
30%. Similarly, it can be reduced by 70% with occupancy control. Along the same lines,
Ashouri et al. [30] suggested that savings of up to 20% could be attained by adjusting
occupants’ behavior through feedback that helps them to take the proper steps to reduce
energy consumption in buildings.

A broader perspective has been adopted by Dong et al. [35]. They argued that occupant
behavior studies have mostly been limited to the building level and indicated that big
data allow the modelling of occupant behavior at the urban scale. Based on the results
of the mentioned studies, it is evident that occupant behavior in buildings considerably
impacts the energy consumption of the built environment. Nevertheless, as discussed
by Dong et al. [35], more precise and thorough modelling of occupant behavior can be
achieved by considering other factors, such as geographical information and changes in
occupant behavior.

4.3. Design & Construction Optimization

Artificial neural networks to accelerate and optimize the design process have received
considerable attention from researchers in recent years. Some scholars have highlighted
the aspects of optimizing the design of buildings, while others have focused on studies
concerning the optimization of construction and structural materials.

4.3.1. Building Design Optimization

The optimization of buildings, in general, is concerned with pinpointing the best
design for optimizing the building energy consumption from a set of alternatives. A re-
search study examined using ANNs combined with a multi-objective genetic algorithm
to optimize thermal comfort and energy consumption in a residential building [40]. This
approach resulted in tens of potential building designs that have the prospect of signifi-
cantly reducing energy consumption whilst improving thermal comfort. Meanwhile, Li
et al. [159] addressed the uncertainties in design inputs that considerably impact build-
ing performance, specifically in subtropical regions. The study utilized an ANN model
for building performance evaluation, thus reducing the computational time. In a more
recent study, Hu et al. [160] investigated the aspects of optimizing the design of built and
yet-to-be-built environments for human occupancy and behavior.

Building information modelling (BIM) supported the atomization of construction
and building management in different aspects [161]. Demianenko and De Gaetani [162]
developed a procedure for pairing BIM models to building energy models using ANNs
and transfer-learning techniques to speed up the process. This method will help architects
and designers predict the energy consumption in a building during the design stage. Wang
et al. [163] proposed a classifying 3D model under the BIM environment using the deep
belief network (DBN) to save costs. The proposed method attained good results in the 3D
model classification for efficient BIM. There is potential for looking into the use of ANNs in
mass construction.

4.3.2. Construction Material Optimization

With rapid urbanization, construction waste has increased considerably in several
parts of the world. There is a growing body of literature that recognizes the importance
of utilizing recycled aggregates in concrete production. However, it is essential to predict
the properties of concrete with different components. Thus, many scholars have employed
numerous methods to predict the properties of concrete. Artificial neural networks have
been used to predict the compressive strength of different concrete mixtures, with a variety
of additives to enhance and optimize those construction materials with older studies,
such as [164–166], and more recent studies, such as [11,83,167,168]. Ref. [169] used a deep
neural network with high-order neurons to predict the compressive strength of foamed
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concrete. The results obtained from the study can guide researchers and engineers in
optimizing the design of foamed concrete. Ukrainczyk and Ukrainczyk [170] analyzed
concrete durability using neural networks, and the outputs were used to aid in repairing
reinforced concrete constructions.

Ferreiro-Cabello et al. [171] addressed improving the design of one-way slabs using
deep-learning neural networks to reduce their environmental impact. Other scholars
experimented with convolutional neural networks to predict the compressive strength
of recycled aggregate concrete [172]. The results indicated the advantages of using this
model, such as being more precise and efficient and having higher generalization abilities
than traditional ANN models. Some studies also considered the environmental impact by
reducing the concrete test’s destructive impact or by testing the strengthening properties of
the green concrete [173,174].

Anysz and Narloch [175] proposed a technique using ANNs to establish the precise
proportions of the components that make a cement-stabilized rammed earth (CRSE) mix-
ture. This technology utilized inorganic soil taken from construction sites and ranked the
components’ influence on its compressive strength with explainable artificial intelligence
tools [176].

Naser [177] studied, using artificial neural networks (ANNs) and genetic program-
ming, the effects of elevated temperatures on the properties of several construction materi-
als, including concrete, brickwork, and different types of steel and wood.

Considerable research has been conducted to investigate different design optimization
measures to improve the overall performance of buildings by minimizing energy consump-
tion and maximizing thermal comfort. This category investigated 28 journal articles on the
topic. In future studies, occupant behavior should be considered as one of the optimization
factors, as this factor significantly impacts energy consumption.

4.4. Cost Prediction

Cost estimating is one of the essential steps in managing a construction project. Schol-
ars have identified the uncertainties surrounding construction cost estimates and recog-
nized the necessity of enhancing data-based cost-prediction models [10,178,179]. Construc-
tion costs rely on various factors, such as materials, labor, equipment, construction duration,
and scheduling. Furthermore, economic fluctuations cause cost variations. These changes
are usually overlooked in traditional cost estimations. Rafiei and Adeli’s [180] study ad-
dressed the issue by proposing a machine-learning model for estimating construction costs,
incorporating economic variables and indexes into their model. Similarly, Cheng et al. [181]
proposed using an artificial intelligence model to estimate the conceptual construction
costs more precisely in a study focused on estimating project costs during the planning
and design stage. Accentuating the importance of decision-making in the early phases of
construction projects, Koo et al. [182] proposed a CBR-based hybrid model for estimating
the construction duration and cost for multifamily housing projects.

Several other scholars have proposed cost-estimate solutions for more specific types
of buildings, such as high-rise buildings [183], commercial buildings [184], and residential
buildings [185]. On the other hand, Tatari and Kucukvar [186] implemented a neural
network model to evaluate and predict the cost premium of LEED-certified green buildings.
The study unveiled relationships between the LEED’s different categories, revealing that the
LEED categories with the highest sensitivity in cost-premium prediction were sustainable
sites and energy and atmosphere.

Several scholars have utilized these ANN model capabilities in construction cost
estimation for studies specific to their countries, such as Jordan [187], Egypt [188], and
Nigeria [189]. Chen and Huang [190] developed neural network models to predict the cost
and duration of school reconstruction projects in Taiwan.

Much of the available literature has adopted approaches for forecasting and estimat-
ing construction costs at the conceptual design phase [74,181,182,191–195]. Few studies
have been performed on building retrofitting or reconstruction [179,190,196]. However,
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limited research has investigated cost-management techniques in the post-contract phase
of the construction process. One is a study by Omotayo et al. [8], who implemented an
ANN approach to predict project managers’ most applicable post-contract cost-controlling
techniques. ANN application is sensitive to the input data. It has better estimation capa-
bilities when trained with large datasets. However, when the input cost factors increase,
the complexity of the ANN models increases, and the construction cost estimate accuracy
decreases [65].

Hence, there is scope for improvement in ANN models regarding the number of
input factors. So far, there has been little discussion on using machine learning and
ANN, particularly in developing a life cycle cost assessment (LCCA). Gao and Pishdad-
Bozorgi [197] proposed an applicable framework to forecast facilities’ LCCA using machine-
learning methods. Adopting a similar position, Alshamrani and Alshibani [198] developed
a decision-support system to forecast the LCCA for educational facilities. Recently, studies
have approached LCCA using an environmental impact assessment as a significant param-
eter for the analysis [74,185,199]. Finally, building information modelling (BIM) was also
used with machine-learning algorithms to predict the construction costs [183], the net costs
associated with BIM adoption [34,200], and the green building costs [201].

4.5. Health and Safety in Construction

Safety in the construction industry is an essential part of the structure’s safety and
durability and the well-being of the construction workers. This was the focus topic for 13%
of the chosen studies in the qualitative analysis sample.

4.5.1. Safety of Workers

Yang et al. [139] used a deep learning-based classification system to measure workers’
exposure to physical loads, such as pulling, pushing, and carrying materials and tools,
whilst performing different construction tasks. In a similar study, Zhang et al. [202] devel-
oped a system to recognize the poor posture of workers performing manual construction
tasks. The proposed system used 3D view-invariant features from a 2D camera. The data
extracted from the images were then fed into a multi-stage convolutional neural network.
This enables a postural ergonomic assessment and, in turn, improves workers’ health and
safety. For instance, the development of remote sensing and image processing accuracy al-
lowed the precise detection of safety elements, such as checking on safety garments [55,203].
A futuristic approach that is yet to be developed is the use of unmanned aerial vehicles.
This idea was adopted by Gard et al. [204] to monitor and track workers on construction
sites. The paper proposed deep learning and an anthropometric plane-based workflow,
which have been experimented with in a nuclear plant, showing promising tracking results.

Convolutional neural network algorithms have been used to detect workers’ activities
and the safety risks that may occur on-site [62,205,206]. The evolution of vision-based
studies in this sector provides an opportunity for faster emergency intervention or accident
prevention in construction sites [32].

4.5.2. Safety of Structures

Butcher et al. [207] focused on detecting the defects in reinforced concrete. The study
relied on the data collected from actual concrete structures to train the neural networks. It
aided in providing information on the electromagnetic properties of the reinforcing steel.
In a similar study, Chatterjee et al. [208] experimented using a multi-objective genetic
algorithm to train a neural network-based model on 150 reinforced concrete buildings to
classify the structural failures in reinforced concrete. Concha and Oreta [209] investigated
the effects of the corrosion of steel reinforcement on the bond strength of rebar in concrete to
avoid the adverse effect that hostile environments cause on the structural health of concrete
structures. The study used neural networks to model the effects of corrosion on bond
strength. The model results can be used as a guide during the design stage, maintaining
procedures that will prolong the service life of concrete structures. Steel structures are the
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least studied for damage and failure assessments since the pre-execution assessments are
getting more accurate during the early design phases with advanced simulation programs.
However, image-driven assessments for steel damage assessments [12].

A different study utilized ANNs to investigate structural failures due to seismic actions,
such as earthquakes and floods, as they increase the vulnerability of the structures [210–212].
Abdollahzadeh et al. [213] proposed a method of simulating artificial aftershock motions
based on the data obtained from trained neural networks, while Alvanitopoulos et al. [210]
used neuro-fuzzy systems to train and test neural networks on the assessment of three
reinforced concrete structures.

Apart from simulation models, remote sensing is also used for post-earthquake as-
sessment, saving time and effort for direct emergency interventions [58,214]. Moreover,
Zhao et al. [215] used CNNs to process images of three different urban scenes in China,
Italy, and Germany to enhance image classification. The implication of such a study is the
interpretation of such macro-scale urban areas for planning and disaster rescue.

A study on safety in the built environment was established to predict smoke motion
via transposed convolutional neural networks [216]. The AI method proposed in the study
was proven to deliver more reliable results in a shorter time, thus producing more feasible
solutions for establishing fire safety in built environments. Incorporating ANNs and
machine-learning methods into construction safety has received critical attention. However,
most of those studies remain in the theoretical stage. Future studies should test and validate
these proposed safety measures [217].

4.6. Soil Mechanics

ANNs are also used to study soil mechanics and vibrations, which affect the settlement
of structures. Refs. [218,219] used the ANN method to examine the settlement rate of
structures near urban tunnels. This study reported the ability to optimize the construction
and operation of underground structures using neural networks. Further exploration of
soil foundation interactions using methods based on ANNs was explored in the literature,
particularly in structures established in cohesionless soil [220]. A recent study highlighted
a new approach to predicting soil settlement underneath a housing construction project.
The main advantage of the study was the proposition of a low-cost, more reliable, and
faster alternative method for estimating this soil parameter through a hybrid metaheuristic-
optimized neural network [221]. Then, they were used to determine structural, architectural
or any other building damage. Even though ANNs have proven capabilities in tackling
soil mechanics problems, as well as exhibiting very effective estimating competencies in
predicting rock mass deformation [219], this was the smallest sample area, representing
only 3% of the overall themes demonstrating the use of ANNs in the construction industry.

5. Discussion

In recent years, researchers have shown an increased interest in applying ANNs in
various areas of the AEC industry. ANNs exhibit high capabilities in pattern detection,
numeric processing, the analysis of large datasets, and decision-making. The main applica-
tion categories that emerged in this study represent the areas of construction and the built
environment in which these ANN capabilities have been most helpful. This research also
identified the critical articles, countries, sources, and co-authors in the existing body of
literature. The co-occurrence of author keywords analysis conducted in Section 3 revealed
that energy management in buildings, cost estimates, occupant comfort in buildings, and
building design optimization are themes that have witnessed a growing academic interest
in recent years. At the same time, topics such as ANN applications within the safety in
construction and soil mechanics are less common.

Based on the thematic review and the findings derived from the scientometric analyses,
it is recommended that future research be targeted in the following directions:
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5.1. Broadening the Application Ranges of ANN into the Current Construction 4.0 Technologies

The co-occurrence of author keywords analysis (Figure 8) indicates that the existing
literature has investigated the application of ANNs in Construction 4.0 technologies, such as
building information modelling, GIS, and IoT. It is suggested that future researchers explore
the other technological aspects of Construction 4.0, particularly in the following fields:

• Robotics: To date, limited research has addressed artificial intelligence applications in
robotics and automated systems in construction. It is a fertile area for future study as
ANNs exhibit capabilities such as adaptive learning, pattern recognition, and real-time
operation [26]. These ANN capabilities can help to develop advanced robotic systems
to perform several tasks in the construction industry. The findings derived from the
scientometric analysis suggest a lack of studies addressing and assessing the risks
faced by construction workers. Section 4.5 in the qualitative analysis shows how the
safety of workers in construction sites is monitored using ANN applications, with
a need for studies on using these applications in robotic systems that can replace
workers in performing arduous and dangerous tasks.

• 3D Printing: Another possible area of future research would be to investigate applying
ANN in 3D printing due to its capability to process large datasets and its powerful
computational ability. 3D printing technology has more potential for application
with BIM development [222]. Although this technology is still in its infancy in the
construction industry, it would be interesting to investigate the association between
ANNs and BIM technology to produce 3D-printed buildings from a BIM model in
future studies.

• Digital Twins: Digital twins are identified as a “digital copy of a physical asset, collect-
ing real-time data from the asset and deriving information not being measured directly
in the hardware” [223]. This is a potentially abundant research area as the models
of existing structures can be enriched dynamically by incorporating the capabilities
of ANNs into training existing building data linked with real-time IoT data. Also,
the current shift from building-centered to human-centered approaches adds more
complexity to the application capabilities of this technology [224].

• VR Applications: Future studies can explore the combined advantages of machine
learning and VR applications to develop an intelligent system that assists in various
tasks in the construction industry to improve design and safety.

5.2. Constructing ANN Applications Research in Developing Countries

Based on the active countries analysis in the scientometric analysis (Figure 5), 13 of
the top 30 active countries are developed or high-income countries (i.e., the United States,
United Kingdom, South Korea, and Australia). Therefore, researchers may need to extend
their applications to developing countries, enhance the existing body of knowledge, and
define the limitations of the application in these contexts.

5.3. Potential Areas for Improvement in the Application of Neural Networks

The findings of the qualitative analysis in Section 4 also point to the need to address
potential improvements in the development and application of neural networks in future
studies in the following aspects:

• Prevention of overestimation in ANNs: a limitation of developing ANN models
is that ANNs build the models automatically after being fed raw data. This leads
to the potential risk of overestimation due to the pseudorandom nature of trained
datasets [225]. Further research areas can delve into the avoidance of overestimation.

• Selection of datasets: an additional weakness is the selection of adequate training
datasets. Future studies, including dataset inclusion criteria, would be worthwhile.

6. Future Perspectives

This study adopted a science-mapping approach to comprehensively review the
literature that focused on applying artificial neural networks in construction and the built



Buildings 2024, 14, 2423 20 of 36

environment. Over 700 journal articles were extracted from the Scopus database and further
analyzed quantitatively. A qualitative analysis was conducted on 165 of the 730 articles,
identifying six main themes and areas of research. Furthermore, this research outlined the
future directions of ANNs in construction and built environment research, as displayed in
Figure 10. The fundamental points of the analysis on the future directions were as follows:

1. Broadening the application ranges of ANN into the current Construction 4.0 technolo-
gies, such as robotics, 3D printing, digital twins, and VR applications.

2. Constructing ANN applications research in developing countries.
3. Potential for improving Neural Networks through the prevention of overestimation

in ANNs. The selection criteria of datasets and further research into the “white
box model”.
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6.1. Theoretical Implications

This thorough bibliometric analysis on the applications of ANN in construction and
the built environment identified evolving themes to help future researchers. First, the study
examined the general features of the literature, showing the key contributors in terms
of countries, sources, and top-cited articles. Second, the clustering of the key thematic
areas in Section 3.3 provided insight into the structure of the ANN research by dividing
the field into six clusters (Figure 8). It indicated connections between subfields, such as a
strong connection between the building energy performance, the energy efficiency with
occupant behaviors, and thermal comfort. It also presented clusters with detailed research
on the building design and energy efficiency and clusters with an emerging scope, such
as decision-support systems and indoor air quality. Furthermore, Section 4 presented
a detailed qualitative thematic analysis highlighting the main areas of study and their
respective subareas. Thus, future researchers can understand the current state of applying
ANN in studies relating to the construction industry.

6.2. Practical Implications

This analysis offers a viewpoint on the various emerging themes and topics published
in the past two decades on ANN applications in the construction industry and the built
environment. ANN applications have proven to be helpful within the construction in-
dustry, from offering more sustainable design options for buildings and predicting and
preventing cost overruns to incorporating ANNs and machine learning into construction
safety. With the current move towards the digital age, industry leaders and practitioners
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are embracing Construction 4.0 and the accompanying technologies. This study motivates
firms to invest in implementing innovative construction technologies supported by ANN
applications to attain a competitive advantage through time and money savings, increasing
sustainability and improving site safety. Architectural firms are encouraged to implement
design optimization techniques to plan and design buildings and infrastructure efficiently.
The adoption of accurate cost estimating will prevent cost overruns. ANNs can improve
construction site safety and the durability of the structures. The methodology adopted
in this study for conducting the bibliometric analysis can be customized to the needs of
researchers and development teams in construction companies to attain relevant documents
to be used as checkpoints when conducting industry research.

7. Conclusions

This comprehensive bibliometric analysis highlights the significant advancements and
emerging trends in applying artificial neural networks (ANNs) within the construction
and built environment sectors. Through a meticulous review of over 700 journal articles,
our study has identified key research themes, influential authors, and the geographical
distribution of contributions, providing a detailed landscape of the current state of ANN
research in these fields. One of the limitations of this review is that it only focused on
articles in the English language.

The findings reveal that ANN applications predominantly focus on energy manage-
ment, occupant comfort, design optimization, cost prediction, health and safety, and soil
mechanics. The use of ANNs has shown promising results in enhancing building energy
efficiency, predicting costs more accurately, improving thermal comfort, and optimizing
construction materials and processes. These applications underscore the potential of ANNs
to address complex problems in the AEC sector, offering superior prediction capabilities
and robust decision-support systems.

Despite these advancements, several research gaps and challenges remain. The anal-
ysis indicates a need to expand the application of ANNs into current Construction 4.0
technologies, such as robotics, 3D printing, digital twins, and VR applications. Addition-
ally, there is a significant opportunity to extend ANN research to developing countries,
ensuring a more global and inclusive approach to technological advancements. Further-
more, addressing the issues related to preventing overestimation in ANN models, selecting
adequate training datasets, and improving model generalization are critical areas for
future research.

The study also identified the need for further investigation into specific themes, such
as construction safety and soil mechanics, which have received less attention than other
areas. Moreover, integrating ANNs with emerging technologies, such as IoT and BIM,
holds considerable potential for further research and practical applications.

In conclusion, ANNs offer transformative potential in the construction and built
environment sectors, driving innovation, sustainability, and efficiency. Future research can
significantly contribute to the construction industry’s digital transformation, enhancing
project performance and safety by addressing the identified research gaps and broadening
the scope of ANN applications. The insights provided by this study serve as a valuable
foundation for researchers and practitioners aiming to harness the full potential of ANNs
in the AEC sector. This work paves the way for future studies to build on these findings,
fostering the continued evolution and integration of ANNs into the construction and built
environment industries.

Author Contributions: A.K.K.: Investigation, Methodology, Writing—Original Draft, Administration;
R.I.: Methodology, Review and Editing, Data Curation; S.E.: Writing, Validation, Visualization,
Analysis; M.A.: Supervision, Methodology, Validation. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available upon request to the corresponding author.



Buildings 2024, 14, 2423 22 of 36

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The following table is the list of documents that were selected for the qualitative
analysis (Section 3). Each theme is classified into subcategories of research areas.

Table A1. List of documents for the qualitative analysis for each theme.

Energy Management in Buildings

No. Title Year Subcategory

1 A Comparative Analysis of Data-Driven Based Optimization Models for
Energy-Efficient Buildings

2020

Improving
Energy

Performance

2 A comprehensive method for optimizing the design of a regular architectural space to
improve building performance

2021

3 A decision tree method for building energy demand modelling 2010

4 A study on energy performance of 30 commercial office buildings in Hong Kong 2017

5 A zone-level, building energy optimization combining an artificial neural network, a genetic
algorithm, and model predictive control

2018

6 Accuracy of different machine learning algorithms and added-value of predicting
aggregated-level energy performance of commercial buildings

2020

7 An ANN-GA Semantic Rule-Based System to Reduce the Gap Between Predicted and Actual
Energy Consumption in Buildings

2017

8 An original tool for checking energy performance and certification of buildings by means of
Artificial Neural Networks

2014

9 ANN-GA smart appliance scheduling for optimized energy management in the
domestic sector

2016

10 Artificial neural network-based decision support system for development of an
energy-efficient built environment

2018

11 Artificial neural networks for energy analysis of office buildings with daylighting 2010

12 Attention-based interpretable neural network for building cooling load prediction 2021

13 Comparative study of a building energy performance software (KEP-IYTE-ESS) and
ANN-based building heat load estimation

2014

14 Data-Driven Building Energy Modelling—Generalization Potential of Energy Signatures
Through Interpretable Machine Learning

2022

15 Data-driven model predictive control using random forests for building energy optimization
and climate control

2018

16 Deep learning for estimating building energy consumption 2016

17 Development of a ranking procedure for energy performance evaluation of buildings based
on occupant behavior

2019

18 Early Phases predicting cooling loads for energy-efficient design in office buildings by
machine learning

2019

19 Energy performance forecasting of residential buildings using fuzzy approaches 2020

20 Fault detection analysis using data mining techniques for a cluster of smart office buildings 2015

21 Machine learning modelling for predicting non-domestic buildings energy performance: A
model to support deep energy retrofit decision-making

2020

22 Modelling heating and cooling loads by artificial intelligence for energy-efficient
building design

2014
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Table A1. Cont.

Energy Management in Buildings

No. Title Year Subcategory

23 Modelling the energy performance of residential buildings using advanced computational
frameworks based on RVM, GMDH, ANFIS-BBO and ANFIS-IPSO

2021

Improving
Energy

Performance

24 More Buildings Make More Generalizable Models—Benchmarking Prediction Methods on
Open Electrical Meter Data

2019

25 Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings:
A Comparative Study

2017

26 Predicting heating demand and sizing a stratified thermal storage tank using deep
learning algorithms

2018

27 Predicting hourly cooling load in the building: A comparison of support vector machine and
different artificial neural networks

2009

28 Prediction of building’s temperature using neural networks models 2006

29 Short-Term Forecasting of Heat Demand of Buildings for Efficient and Optimal Energy
Management Based on Integrated Machine Learning Models

2020

30 Systematic approach to provide building occupants with feedback to reduce
energy consumption

2020

31 The London Heat Island and building cooling design 2007

32 Usability evaluation of a web-based tool for supporting holistic building energy management 2017

33 A data-driven interval forecasting model for building energy prediction using
attention-based LSTM and fuzzy information granulation

2022

Predicting
Energy

Consumption

34 A hybrid model for building energy consumption forecasting using long short-term
memory networks

2020

35 A long short-term memory artificial neural network to predict daily HVAC consumption
in buildings

2020

36 An artificial neural network (ANN) expert system enhanced with the electromagnetism-based
firefly algorithm (EFA) for predicting the energy consumption in buildings

2020

37 Artificial neural network for assessment of energy consumption and cost for cross laminated
timber office building in severe cold regions

2018

38 Artificial neural network model for forecasting sub-hourly electricity usage in
commercial buildings

2016

39 Artificial neural networks for the prediction of the energy consumption of a passive
solar building

2000

40 Determining key variables influencing energy consumption in office buildings through
cluster analysis of pre- and post-retrofit building data

2018

41 Energy consumption predicting model of VRV (Variable refrigerant volume) system in office
buildings based on data mining

2016

42 Estimating building energy consumption using extreme learning machine method 2016

43 Forecast electricity demand in commercial building with machine learning models to enable
demand response programs

2022

44 Forecasting energy demand of PCM integrated residential buildings: A machine
learning approach

2023

45 Forecasting peak energy demand for smart buildings 2021

46 Hourly energy consumption prediction of an office building based on ensemble learning and
energy consumption pattern classification

2021

47 Improving consumption estimation of electrical materials in residential building construction 2016

48 Measuring energy consumption efficiency of the construction industry: The case of China 2015
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Table A1. Cont.

Energy Management in Buildings

No. Title Year Subcategory

49 Modelling energy consumption in residential buildings: A bottom-up analysis based on
occupant behavior pattern clustering and stochastic simulation

2017

Predicting
Energy

Consumption

50 Prediction of building energy consumption by using artificial neural networks 2009

51 Prediction of hourly energy consumption in buildings based on a feedback artificial
neural network

2005

52 Prediction of occupancy level and energy consumption in office building using blind system
identification and neural networks

2019

53 Vector field-based support vector regression for building energy consumption prediction 2019

54 Visualized strategy for predicting buildings energy consumption during Early Phases design
stage using parametric analysis

2017

Occupant Comfort in buildings

No. Title Year Subcategory

55 A machine-learning-based approach to predict residential annual space heating and cooling
loads considering occupant behavior

2020

Modelling
Occupant
Behavior

56 BIM-PoseNet: Indoor camera localization using a 3D indoor model and deep learning from
synthetic images

2019

57 Building occupancy modelling using generative adversarial network 2018

58 Development and comparative analysis of the fuzzy inference system-based construction
labor productivity models

2023

59 Engineering Approach Using ANN to Improve and Predict Construction Labor Productivity
under Different Influences

2017

60 Machine learning for occupant-behavior-sensitive cooling energy consumption prediction in
office buildings

2021

61 Modelling occupant behavior in buildings 2020

62 Occupant behavior modelling methods for resilient building design, operation, and policy at
urban scale: A review

2021

63 Opportunistic occupancy-count estimation using sensor fusion: A case study 2019

64 Predicting the construction labor productivity using artificial neural network and
grasshopper optimization algorithm

2023

65 Reinforcement learning of occupant behavior model for cross-building transfer learning to
various HVAC control systems

2021

66 Simulating the impact of occupant behavior on energy use of HVAC systems by
implementing a behavioral artificial neural network model

2019

67 Applying Artificial Neural Networks for Measuring and Predicting
Construction-Labor Productivity

2015

68 A building information model (BIM) and artificial neural network (ANN) based system for
personal thermal comfort evaluation and energy efficient design of interior space

2019

Thermal
Comfort of
Occupants

69 A novel method based on neural networks for designing internal coverings in buildings:
Energy saving and thermal comfort

2019

70 Adaptive behavior and different thermal experiences of real people: A Bayesian neural
network approach to thermal preference prediction and classification

2021

71 Application of multi-objective genetic algorithm to optimize energy efficiency and thermal
comfort in building design

2015

72 Artificial neural network analysis of teachers’ performance against thermal comfort 2021

73 Artificial neural network for the thermal comfort index prediction: Development of a new
simplified algorithm

2020
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Occupant Comfort in buildings

No. Title Year Subcategory

74 Artificial neural network models using thermal sensations and occupants’ behavior for
predicting thermal comfort

2018 Thermal
Comfort of
Occupants

75 Automated classification of indoor environmental quality control using stacked ensembles
based on electroencephalograms

2020

Thermal
Comfort of
Occupants

76 Comparative performance of machine learning algorithms in the prediction of indoor
daylight illuminances

2020

77 Data driven indoor air quality prediction in educational facilities based on IoT network 2021

78 Development and application of linear ventilation and temperature models for indoor
environmental prediction and HVAC systems control

2019

79 Fast prediction for multi-parameters (concentration, temperature, and humidity) of indoor
environment towards the online control of HVAC system

2021

80 Indoor environmental quality evaluation of lecture classrooms in an institutional building in
a cold climate

2019

81 Infrared infused cicion-based 2022

82 Model predictive control with adaptive machine-learning-based model for building energy
efficiency and comfort optimization

2020

83 Neural networks based predictive control for thermal comfort and energy savings in
public buildings

2012

84 Temperature-preference learning with neural networks for occupant-centric building indoor
climate controls

2019

85 Thermal comfort prediction in a building category: Artificial neural network generation from
calibrated models for a social housing stock in southern Europe

2019

86 Toward contactless human thermal monitoring: A framework for Machine Learning-based
human thermo-physiology modelling augmented with computer vision

2023

Occupant Comfort in buildings

No. Title Year Subcategory

87 A neural network approach to predicting the net costs associated with BIM adoption 2020

BIM adoption
88 Construction Cost Prediction Based on Genetic Algorithm and BIM 2020

89 Developing an Integrative Data Intelligence Model for Construction Cost Estimation 2022

90 Forecasting the net costs to organizations of building information modelling (BIM)
implementation at different levels of development (LOD)

2019

91 A CBR-based hybrid model for predicting a construction duration and cost based on project
characteristics in multi-family housing projects

2010

Early Phases

92 A computer-based cost prediction model for institutional building projects in Nigeria an
artificial neural network approach

2014

93 A hybrid approach for a cost estimate of residential buildings in Egypt at the Early
Phases stage

2020

94 A model utilizing the artificial neural network in cost estimation of construction projects
in Jordan

2021

95 A neural network approach for Early Phases cost estimation of structural systems of buildings 2004

96 Conceptual estimation of construction costs using the multistep ahead approach 2016

97 Efficient estimation and optimization of building costs using machine learning 2023

98 Improved similarity measure in case-based reasoning: a case study of construction
cost estimation

2020
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Occupant Comfort in buildings

No. Title Year Subcategory

99 Investment decision management: Prediction of the cost and period of commercial building
construction using artificial neural network

2011

Early Phases

100 Neural Network-Based Model for Predicting Preliminary Construction Cost as Part of Cost
Predicting System

2020

101 Predicting construction cost and schedule success using artificial neural networks ensemble
and support vector machines classification models

2012

102 Web-based conceptual cost estimates for construction projects using Evolutionary Fuzzy
Neural Inference Model

2009

103 Cost premium prediction of certified green buildings: A neural network approach 2011 Environmental
Impact

Assessment
104 Environmental impacts cost assessment model of residential building using an artificial

neural network
2021

105 A framework of developing machine learning models for facility life-cycle cost analysis 2020

LCA

106 Extreme Gradient Boosting-Based Machine Learning Approach for Green Building
Cost Prediction

2022

107 Life cycle environmental and cost assessment of prefabricated components manufacture 2023

108 Multi-objective optimization of building design for life cycle cost and CO2 emissions: A case
study of a low-energy residential building in a severe cold climate

2022

109 An artificial neural network approach to predicting most applicable post-contract cost
controlling techniques in construction projects

2020 Post-contract

110 Application of artificial neural network methodology for predicting seismic retrofit
construction costs

2014

Reconstruction111 Approximately predicting the cost and duration of school reconstruction projects in Taiwan 2006

112 Predicting cost deviation in reconstruction projects: Artificial neural networks
versus regression

2003

113 Construction cost prediction model for conventional and sustainable college buildings in
North America

2017

114 Novel Machine-Learning Model for Estimating Construction Costs Considering Economic
Variables and Indexes

2018

Design & Construction Optimization

No. Title Year Subcategory

118 Modelling the confined compressive strength of hybrid circular concrete columns using
neural networks

2011

Building
Design

Optimization

119 Multi-objective optimization for building retrofit: A model using genetic algorithm and
artificial neural network and an application

2014

120 Multi-objective optimization of building design using TRNSYS simulations, genetic
algorithm, and Artificial Neural Network

2010

121 On-demand monitoring of construction projects through a game-like hybrid application of
BIM and machine learning

2020

122 Predicting Crowd Egress and Environment Relationships to Support Building
Design Optimization

2020

123 Robust optimal design of zero/low energy buildings considering uncertainties and the
impacts of objective functions

2019

124 A neural network method for analyzing concrete durability 2008 Construction
material

optimization
125 An artificial neural network approach for prediction of long-term strength properties of steel

fiber reinforced concrete containing fly ash
2008
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Design & Construction Optimization

No. Title Year Subcategory

126 ANN-Python prediction model for the compressive strength of green concrete 2023

127 Artificial neural networks in classification of steel grades based on non-destructive tests 2020

Construction
material

optimization

128 Compressive strength prediction of recycled concrete based on deep learning 2018

129 Concrete compressive strength prediction using the imperialist competitive algorithm 2018

130 Deep belief network-based 3D models classification in building information modelling 2015

131 Deep neural network with high-order neuron for the prediction of foamed concrete strength 2019

132 Designing the composition of cement stabilized rammed earth using artificial
neural networks

2019

133 Feature importance of stabilized rammed earth components affecting the compressive
strength calculated with explainable artificial intelligence tools

2020

134 Metamodel-based design optimization of structural one-way slabs based on deep learning
neural networks to reduce environmental impact

2018

135 Predicting concrete compressive strength using hybrid ensembling of surrogate machine
learning models

2021

136 Predicting the compressive strength of normal and High-Performance Concretes using ANN
and ANFIS hybridized with Grey Wolf Optimizer

2020

137 Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with
mineral additives using artificial neural network

2011

138 Prediction of concrete compressive strength: Research on hybrid models genetic based
algorithms and ANFIS

2014

139 Properties and material models for common construction materials at elevated temperatures 2019

Health & Safety in Construction

No. Title Year Subcategory

140 A machine learning-based prediction and analysis of flood affected households: A case study
of floods in Bangladesh

2019

Safety of
structures

141 Application of the Artificial Neural Network for Predicting Mainshock-Aftershock Sequences
in Seismic Assessment of Reinforced Concrete Structures

2021

142 Defect detection in reinforced concrete using random neural architectures 2014

143 Evolutionary learning based sustainable strain sensing model for structural health
monitoring of high-rise buildings

2017

144 Fusing damage-sensitive features and domain adaptation towards robust damage
classification in real buildings

2023

145 Image-driven structural steel damage condition assessment method using deep
learning algorithm

2019

146 Integration of super-pixel segmentation and deep-learning methods for evaluating
earthquake-damaged buildings using single-phase remote sensing imagery

2020

147 Investigation of the effects of corrosion on bond strength of steel in concrete using
neural network

2021

148 Neuro-fuzzy techniques for the classification of earthquake damages in buildings 2010

149 Object-Based Convolutional Neural Network for High-Resolution Imagery Classification 2017

150 Operational earthquake-induced building damage assessment using CNN-based direct
remote sensing change detection on superpixel level

2022

151 Smart performance-based design for building fire safety: Prediction of smoke motion via AI 2021
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Health & Safety in Construction

No. Title Year Subcategory

152 Structural failure classification for reinforced concrete buildings using trained neural network
based multi-objective genetic algorithm

2017 Safety of
structures

153 Accident Analysis for Construction Safety Using Latent Class Clustering and Artificial
Neural Networks

2020

Safety of
workers

154 Construction Safety Risk Model with Construction Accident Network: A Graph
Convolutional Network Approach

2022

155 Convolutional neural networks: Computer vision-based workforce activity assessment
in construction

2018

156 Deep learning-based classification of work-related physical load levels in construction 2020

157 Detecting safety helmet wearing on construction sites with bounding-box regression and
deep transfer learning

2021

158 Enhancing construction safety: Machine learning-based classification of injury types 2023

159 Ergonomic posture recognition using 3D view-invariant features from single ordinary camera 2018

160 Prediction of engineering performance: A neuro-fuzzy approach 2005

161 Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s 2023

Soil Mechanics

No. Title Year

162 A fuzzy-neural network method for modelling uncertainties in soil-structure
interaction problems

2003

163 A new approach of hybrid bee colony optimized neural computing to estimate the soil
compression coefficient for a housing construction project

2019

164 Assessment of optimum settlement of structure adjacent urban tunnel by using neural
network methods

2013

165 Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks 2016
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